Respuesta :

You can get all the terms on one side, and then solve for x by any means:
[tex]0 = -8x^2+22x+6[/tex]

Factor out a -2:
[tex]0 = -2(4x^2-11x-3)[/tex]

Factor this equation:
[tex]0 = 4x^2-11x-3[/tex]

I will use the AC method. To use it, first multiply a and c (in ax^2 + bx +c):
[tex]4*-3 = -12[/tex]

Now, look for two numbers that multiply to -12 and add to -11. Obviously these numbers are -12 and 1. (-12*1 = -12 and -12+1  = -11). Now, because of rules, you set it up in a Punnett square:

4x^2        -12x
x              -3

Now, we find common factors of the terms in rows:
     _x_______-3__
4x| 4x^2        -12x
1   | x              -3

So, you can use this to write an equivalent expression to the quadratic given:
[tex](x-3)(4x+1)[/tex]

Now, we known the factors are (solve for x): 3 and -1/4.
8x² = 6 + 22x

Rearranging the quadratic equation, (Ax² + Bx + C = 0)
                                            8x² - 22x - 6 = 0

Simplify. Divide both sides of the equation by 2.
                                           4x² - 11x - 3 = 0

Using the quadratic formula. Identify first the value of the coefficients. 
A = 4
B = -11
C = -3

Using the quadratic formula:

[tex]x = \frac{-B +- \sqrt{B^2 - 4AC} }{2A} [/tex]

Substitute A, B and C

[tex] x_{1} = \frac{-(-11) + \sqrt{(-11)^2 - 4(4)(-3)} }{2(4)}[/tex]
     
                 x = 3

[tex] x_{1} = \frac{-(-11) - \sqrt{(-11)^2 - 4(4)(-3)} }{2(4)}[/tex]

                 x = [tex]- \frac{1}{4} [/tex]