!!!!!!!!!!! 100 POINTS !!!!!!!!!!!!!!!!!!! ENSURE YOUR ANSWER IS CORRECT BEFORE POSTING !!!!!
How would you go about solving this? Please provide formulae, rules, explanation / working out . Thank you in advance!

100 POINTS ENSURE YOUR ANSWER IS CORRECT BEFORE POSTING How would you go about solving this Please provide formulae rules explanation working out Thank you in class=

Respuesta :

Answer:

[tex] \frac{16 { y^{4} }^{} }{x {}^{8} } [/tex]

Step-by-step explanation:

Please find the attached

Ver imagen olumideolawoyin
msm555

Answer:

[tex]\dfrac{16y^4}{x^{8}}[/tex]

Step-by-step explanation:

To simplify the expression [tex]\sf (\dfrac{2x^5}{8xy^2})^{-2}[/tex], we'll follow these steps:

Apply the Negative Exponent Rule:

[tex]\large\boxed{\boxed{\sf \left(\dfrac{a}{b}\right)^{-n} = \dfrac{1}{(\dfrac{a}{b})^n} = \dfrac{b^n}{a^n}}}[/tex]

Therefore,

[tex]\sf\left(\dfrac{2x^5}{8xy^2}\right)^{-2} = \left(\dfrac{8xy^2}{2x^5}\right)^{2}[/tex]

Simplify Inside the Parentheses:

Simplify [tex]\sf \dfrac{8xy^2}{2x^5}[/tex]:

[tex]\sf\dfrac{8xy^2}{2x^5} = \dfrac{8}{2} \cdot \dfrac{y^2}{x^5-1} = 4 \cdot \dfrac{y^2}{x^4}[/tex]

Apply Exponent Rules:

[tex]\large\boxed{\boxed{(x^a y^b)^c = x^{ac}y^{bc}}}[/tex]

Now, raise the simplified expression to the power of 2:

[tex]\sf \left(4 \cdot \dfrac{y^2}{x^5}\right)^{2} = 4^2 \cdot \left(\dfrac{y^2}{x^4}\right)^2[/tex]

Perform the Calculations:

Calculate [tex]\sf 4^2 = 16[/tex], and square the terms inside the parentheses:

[tex]\sf16 \cdot \left(\dfrac{y^2}{x^5}\right)^2 = 16 \cdot \dfrac{y^{2 \cdot 2 }}{x^{4\cdot 2}} \\\\ = 16 \cdot \dfrac{y^{8}}{x^{8}}[/tex]

Final Simplification:

Combine the terms to get the final simplified expression:

[tex]\sf 16 \cdot \dfrac{y^4}{x^{8}} = \dfrac{16y^4}{x^{8}}[/tex]

Therefore, [tex]\sf \left(\dfrac{2x^5}{8xy^2}\right)^{-2}[/tex] simplifies to [tex]\sf \dfrac{16y^4}{x^{8}}[/tex].

The final simplified expression is:

[tex]\sf \boxed{\dfrac{16y^4}{x^{8}}}[/tex]