Respuesta :
Answer:
[tex]20s^3+50s^2+32s+6[/tex]
Explanation:
we have been given the function [tex]\left(4s+2\right)\left(5s^2+10s+3\right)[/tex]
So, as to multiply the two expression step by step calculation is shown below:
First of all we will open the parenthesis
[tex]4s\cdot \:5s^2+4s\cdot \:10s+4s\cdot \:3+2\cdot \:5s^2+2\cdot \:10s+2\cdot \:3[/tex]
[tex]4\cdot \:5s^2s+4\cdot \:10ss+4\cdot \:3s+2\cdot \:5s^2+2\cdot \:10s+2\cdot \:3[/tex]
After simplification we will get the following:
[tex]4\cdot \:5s^2s+4\cdot \:10ss+4\cdot \:3s+2\cdot \:5s^2+2\cdot \:10s+2\cdot \:3:\quad 20s^3+50s^2+32s+6[/tex]
After further simplification we will get
[tex]20s^3+50s^2+32s+6[/tex]