Respuesta :
[tex]\bf a^{-{ n}} \implies \cfrac{1}{a^{ n}}\qquad \qquad
\cfrac{1}{a^{ n}}\implies a^{-{ n}}\\\\
-----------------------------\\\\
(y^b)^4=\cfrac{1}{y^{24}}\iff y^{b\cdot 4}=y^{-24}\implies y^{4b}=y^{-24}
\\\\\\
\textit{bases are the same, exponents must be the same}
\\\\\\
4b=-24[/tex]
solve for "b"
solve for "b"
Answer:
Step-by-step explanation:
Since we are solving an exponential equation so we first need to think about making the base of both sides of equation same .
[tex](y^b)^4 = 1/y^{24} )[/tex]
it simplifies to
[tex]y^{4b} = 1/y^{24}[/tex]
[tex]y^{4b} = y^{-24}[/tex]
Now base is same on both sides so we can equate the exponent
[tex]4b=-24\\b=\frac{-24}{4} \\b=-6[/tex]