Respuesta :

basically sub g(x) for x in f(x)

[tex]f(g(x))=( g(x))^2+2(g(x))+3[/tex]
[tex]f(g(x))=( \frac{x+4}{3})^2+2( \frac{x+4}{3})+3[/tex]
we don't need to simplify

[tex]f(g(2))=( \frac{2+4}{3})^2+2( \frac{2+4}{3})+3[/tex]
[tex]f(g(2)))=( \frac{6}{3})^2+2( \frac{6}{3})+3[/tex
[tex]f(g(2)))=(2)^2+2(2)+3[/tex
f(g(2))=4+4+3
f(g(2))=11
answer is 11