Respuesta :
Answer:
x=-2
Step-by-step explanation:
[tex]14+5x=3\left(-x+3\right)-11[/tex]
[tex]3\left(-x+3\right)-11[/tex] ← ( Expand)
[tex]14+5x=-3x-2[/tex]
[tex]14+5x-14=-3x-2-14[/tex] ← ( Subtract 14 from both sides)
[tex]5x=-3x-16[/tex]
[tex]5x+3x=-3x-16+3x[/tex]
[tex]8x=-16[/tex]
[tex]\cfrac{8x}{8}=\cfrac{-16}{8}[/tex] ← ( Divide both sides by 8)
[tex]x=-2[/tex]
~
Answer:
- -2
Step-by-step explanation:
In the question we have given with an equation that is 14 + 5x = 3 ( -x + 3 ) - 11 .
And we are asked to find the value of x.
Solution : -
[tex] \longmapsto \: 14 + 5x = 3( - x + 3) - 11[/tex]
Step 1 : Solving parenthesis on right side :
[tex] \longmapsto \: 14 + 5x = - 3x + 9 - 11[/tex]
On further calculations we get :
[tex] \longmapsto \: 14 + 5x = - 3x - 2[/tex]
Step 2 :
Subtracting 14 from both sides :
[tex] \longmapsto \: \cancel{14} - \cancel{14 }+ 5x = -3x -2 - 14[/tex]
On further calculations we get :
[tex] \longmapsto \: 5x = - 3x - 16[/tex]
Step 3 : Adding 3x on both sides :
[tex] \longmapsto \: 5x + 3x = - \cancel{ 3x} + \cancel{3x} - 16[/tex]
On further calculations we get :
[tex] \longmapsto \: 8x = - 16[/tex]
Step 4 : Dividing by 8 on both sides :
[tex] \longmapsto \: \frac{ \cancel{8}x}{ \cancel{8}} = \cancel {\frac{ - 16}{8} }[/tex]
We get :
[tex] \longmapsto \: \red{\boxed{ \mathfrak{x = - 2}}}[/tex]
- Therefore , value of x is -2 .
Verifying :
We're verifying our answer by substituting value of x in given equation . So ,
- 14 + 5x = 3 ( -x + 3 ) - 11
- 14 + 5 ( - 2 ) = 3 { -( -2 ) + 3 ) - 11
- 14 - 10 = 3 ( 2 + 3 ) - 11
- 4 = 3 ( 5 ) - 11
- 4 = 15 - 11
- 4 = 4
- L.H.S = R.H.S
- Hence , Verified .
Therefore , our value for x is valid .