Respuesta :

Answer:

m∠Q = 121°

m∠R = 58°

m∠S = 123°

m∠T = 58°

Step-by-step explanation:

The sum of the interior angles of a quadrilateral = 360°

Create an expression for the sum of all the angles and equate it to 360, then solve for x:

      ∠Q + ∠T + ∠S + ∠R = 360

⇒ 2x + 5 + x + 2x + 7 + x = 360

⇒ 6x + 12 = 360

⇒ 6x = 360 - 12 = 348

⇒ x = 348 ÷ 6 = 58

So now we know that x = 58, we can calculate all the angles:

m∠Q = 2x + 5 = (2 x 58) + 5 = 121°

m∠R = x = 58°

m∠S = 2x + 7 = (2 x 58) + 7 = 123°

m∠T = x = 58°