find the value of x so that the figures have the same perimeter. (MARKING AS BRAINS
ST FOR PERSON WHO. GIVES THE ANSWER)

10) So here, in the first figure –
We are given a Rectangle and we know formula for perimeter of a rectangle's given
In case of 2nd figure a tiangle's given whose formula of Perimeter will be
According to the question :-
↠Perimeter of rectangle = Perimeter of triangle
↠ x+3 +x+5+x+4 = 2 (x+4+x-2)
↠ 3x + 12 = 2(2x+2)
↠ 2(2x+2) = 3x + 12
↠ 4x +4 = 3x+12
↠ 4x-3x +4-12 = 0
↠ x -8 =0
↠ x = 8
Answer:
In Figure 1 :
We know that, It is a rectangle and the formula for finding the perimeter of a rectangle is :
In Figure 2 :
We know that, it is a triangle and the formula for finding the perimeter of a triangle is :
[tex] \\ \: \: { \underline{ \underline{ \textbf{\textsf{{ According to the Question \::}{}}}}}}[/tex]
[tex] \\ \sf \implies \: 2(x - 2 + x+4) = (x + 3) + (x + 4) + (x + 5)\: \: \: \: \: \: \: \\ \\ \sf \implies \: 2(2x +2) = x + 3 + x + 4 + x + 5\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \sf \implies \: 4x + 4 = 3x + 12 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \sf \implies \: 4x - 3x = 12 - 4 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \sf \implies \: x = 8 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\[/tex]