Respuesta :

The given proof of De Moivre's theorem is related to the operations of

complex numbers.

The Correct Responses;

  • Step A: Laws of indices
  • Step C: Expanding and collecting like terms
  • Step D: Trigonometric formula for the cosine and sine of the sum of two numbers

Reasons that make the above selection correct;

The given proof is presented as follows;

[tex]\mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1}}[/tex]

  • Step A: By laws of indices, we have;

[tex]\left[cos(\theta) + i \cdot sin(\theta) \right]^{k + 1} = \mathbf{\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}[/tex]

[tex]\left[cos(\theta) + i \cdot sin(\theta) \right]^{k} \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = \mathbf{\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right]}[/tex]

  • Step B: By expanding, we have;

[tex]\left[cos(k \cdot \theta) + i \cdot sin(k \cdot \theta) \right] \cdot \left[cos(\theta) + i \cdot sin(\theta) \right] = cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right][/tex]

  • Step D: From trigonometric addition formula, we have;

cos(A + B) = cos(A)·cos(B) - sin(A)·sin(B)

sin(A + B) = sin(A)·cos(B) + sin(B)·cos(A)

Therefore;

[tex]cos(k \cdot \theta) \cdot cos(\theta) - sin(k \cdot \theta) \cdot sin(\theta) + i \cdot \left [sin(k \cdot \theta) \cdot cos(\theta) + cos(k \cdot \theta) \cdot sin(\theta) \right] = \mathbf{ cos(k \cdot \theta + \theta) + i \cdot sin(k \cdot \theta + \theta)}[/tex]

Learn more about  complex numbers here:

https://brainly.com/question/11000934

Answer:

Step A: Product of Powers

Step C: Distributive Property

Step D: Trigonometric Sum Identity

Step-by-step explanation:

Correct on Edge :)