Respuesta :
Answer:
250 m
Explanation:
Refer to the attachment for the graph. Here, we are asked to calculate the distance travelled.
⇒ Area under the graph = Distance travelled by the body
- Let the distance travelled by the body be S. Area under the graph will be the area of the trapezium ABCD.
Area of trapezium = ½ × Sum of parallel sides × Height
[tex] \twoheadrightarrow \quad \sf {S = \dfrac{1}{2}\times (AD + BC) \times OC} \\ [/tex]
[tex] \twoheadrightarrow \quad \sf {S = \dfrac{1}{\cancel{2}}\times (10+30) \times \cancel{10}} \\ [/tex]
[tex] \twoheadrightarrow \quad \sf {S = 1\times 50 \times 5} \\ [/tex]
[tex]\twoheadrightarrow \quad \boxed{\red{\sf{ S = 250 \; m}}}\\[/tex]
❝ Therefore, distance travelled by the body is 250 m. ❞
