Respuesta :

[tex]\dfrac{\partial f}{\partial x}=\cos(x-y)[/tex]

[tex]\dfrac{\partial f}{\partial y}=-\cos(x-y)[/tex]

You have [tex]\cos(-9-(-9))=\cos0=1[/tex], so the partial derivative with respect to [tex]x[/tex] is [tex]1[/tex], while the partial derivative with respect to [tex]y[/tex] is [tex]-1[/tex].

The first partial derivatives of given function with respect to x is [tex]1[/tex] and with respect to y is [tex]-1[/tex]

Partial derivative:

The given function is,

                    [tex]f(x,y)=sin(x-y)[/tex]

first partial derivatives of given function with respect to x is,

                   [tex]\frac{\partial f}{\partial x}=cos(x-y)[/tex]

At point (-9, -9)

                  [tex]\frac{\partial f}{\partial x}=cos(-9+9)=cos(0)=1[/tex]

first partial derivatives of given function with respect to y is,

                  [tex]\frac{\partial f}{\partial x}=-cos(x-y)[/tex]

At point (-9, -9),

                  [tex]\frac{\partial f}{\partial x}=-cos(-9+9)=-cos(0)=-1[/tex]

Learn more about the derivative of function here:

https://brainly.com/question/12047216