Respuesta :
If g(x) = (8x + 5) + 1, then the correct answers are in bold below
Select each correct answer.
horizontal translation 1 unit left
vertical translation 1 unit down
vertical translation 5 units up
vertical translation 1 unit up
horizontal translation 5 units right
horizontal translation 5 units left
Select each correct answer.
horizontal translation 1 unit left
vertical translation 1 unit down
vertical translation 5 units up
vertical translation 1 unit up
horizontal translation 5 units right
horizontal translation 5 units left
Transformation involves changing the form of a function
The transformations are:
- vertical translation 1 unit up .
- horizontal translation 5 units left.
The functions are given as:
[tex]\mathbf{f(x) = 8x}[/tex]
[tex]\mathbf{g(x) = 8(x + 5) + 1}[/tex]
Considering f(x), we have:
[tex]\mathbf{f(x) = 8x}[/tex]
Start by translating the function 5 units left.
The rule of this translation is:
[tex]\mathbf{f'(x) = f(x + 5)}[/tex]
So, we have:
[tex]\mathbf{f'(x) = 8(x + 5)}[/tex]
Next, translate the function 1 unit up
The rule of this translation is:
[tex]\mathbf{f''(x) = f'(x) + 1}[/tex]
So, we have:
[tex]\mathbf{f''(x) = 8(x + 5) + 1}[/tex]
Rewrite as:
[tex]\mathbf{g(x) = 8(x + 5) + 1}[/tex]
Hence, the transformations are: vertical translation 1 unit up and horizontal translation 5 units left
Read more about transformations at:
https://brainly.com/question/13801312