Let f(x)=8x and g(x)=8x+5+1.



Which transformations are needed to transform the graph of f(x to the graph of g(x)?

Select each correct answer.

horizontal translation 1 unit left

vertical translation 1 unit down

vertical translation 5 units up

vertical translation 1 unit up

horizontal translation 5 units right

horizontal translation 5 units left

Respuesta :

If g(x) = (8x + 5) + 1, then the correct answers are in bold below

Select each correct answer.

horizontal translation 1 unit left

vertical translation 1 unit down

vertical translation 5 units up

vertical translation 1 unit up 

horizontal translation 5 units right

horizontal translation 5 units left

Transformation involves changing the form of a function

The transformations are:

  • vertical translation 1 unit up .
  • horizontal translation 5 units left.

The functions are given as:

[tex]\mathbf{f(x) = 8x}[/tex]

[tex]\mathbf{g(x) = 8(x + 5) + 1}[/tex]

Considering f(x), we have:

[tex]\mathbf{f(x) = 8x}[/tex]

Start by translating the function 5 units left.

The rule of this translation is:

[tex]\mathbf{f'(x) = f(x + 5)}[/tex]

So, we have:

[tex]\mathbf{f'(x) = 8(x + 5)}[/tex]

Next, translate the function 1 unit up

The rule of this translation is:

[tex]\mathbf{f''(x) = f'(x) + 1}[/tex]

So, we have:

[tex]\mathbf{f''(x) = 8(x + 5) + 1}[/tex]

Rewrite as:

[tex]\mathbf{g(x) = 8(x + 5) + 1}[/tex]

Hence, the transformations are: vertical translation 1 unit up  and horizontal translation 5 units left

Read more about transformations at:

https://brainly.com/question/13801312