Respuesta :

Answer:

[tex]y=-\frac{4}{3}x +\frac{26}{3}[/tex]

Step-by-step explanation:

1) if the point A has coordinates (-1;10) and the point B - (5;2), then it is possible to write common view of the required equation of the line:

[tex]\frac{x-X_A}{X_B-X_A} =\frac{y-Y_A}{Y_B-Y_A};[/tex]

2) if to substitute the coordinates of A&B into the common equation, then:

[tex]\frac{x+1}{5+1} =\frac{y-10}{2-10}; \ => \frac{x+1}{6}=\frac{y-10}{-8};[/tex]

3) finally, in slope-intersection form:

3y= -4x+26; ⇔ y= -4/3 x +26/3.

P.S. the suggested way of the solution is not the only one.