Respuesta :

Given:

The functions are:

(1) [tex]h(x)=\sqrt{1-x}[/tex]

(2) [tex]x+y=4[/tex]

(3) [tex]x^2+y^2=16[/tex]

To find:

The domain of given functions.

Solution:

Domain is the set of input and x -values.

Value under the square root must be positive because if the number under square root is negative, then it is a complex or imaginary number.

(1) [tex]h(x)=\sqrt{1-x}[/tex]

The function is defined if

[tex]1-x\geq 0[/tex]

[tex]1\geq x[/tex]

The function is defined for all real values of x which are less than or equal to 1.

Therefore, the domain of the function is (-∞,1].

(2) [tex]x+y=4[/tex]

It is a linear function and linear function is defined for all real values of x.

Therefore, the domain of the function is (-∞,∞).

(3) [tex]x^2+y^2=16[/tex]

It can be written as

[tex]y^2=16-x^2[/tex]

[tex]y=\pm \sqrt{16-x^2}[/tex]

It is defined if

[tex]16-x^2\geq 0[/tex]

[tex]16\geq x^2[/tex]

[tex]4\geq x\geq -4[/tex]

This function defined for all real values of x from -4 to 4.

Therefore, the domain of the function is [-4,4].