how do i solve this question?

Answer:
[tex]x = 18[/tex]
[tex]y = 6\sqrt{3}[/tex]
Step-by-step explanation:
Trigonometric Ratios
The ratios of the sides of a right triangle are called trigonometric ratios. The longest side of a right triangle is called the hypotenuse and the other two sides are called the legs.
Selecting any of the acute angles as a reference, it has an adjacent side and an opposite side. The trigonometric ratios are defined upon those sides as follows:
Cosine Ratio
[tex]\displaystyle \cos\theta=\frac{\text{adjacent leg}}{\text{hypotenuse}}[/tex]
Sine Ratio
[tex]\displaystyle \sin\theta=\frac{\text{opposite leg}}{\text{hypotenuse}}[/tex]
Consider the angle of θ=30°, then we can write:
[tex]\displaystyle \cos 30^\circ=\frac{x}{12\sqrt{3}}[/tex]
Solving for x:
[tex]x=12\sqrt{3}\cos 30^\circ[/tex]
Since:
[tex]\cos 30^\circ=\frac{\sqrt{3}}{2}[/tex]
Then:
[tex]x=12\sqrt{3}\cdot \frac{\sqrt{3}}{2}[/tex]
[tex]x = 18[/tex]
Now apply the sine:
[tex]\displaystyle \sin 30^\circ=\frac{y}{12\sqrt{3}}[/tex]
Solving for y:
[tex]y=12\sqrt{3}\sin 30^\circ[/tex]
Since:
[tex]\sin 30^\circ=\frac{1}{2}[/tex]
Then:
[tex]y=12\sqrt{3}\cdot \frac{1}{2}[/tex]
[tex]y = 6\sqrt{3}[/tex]
Answer:
[tex]x = 18[/tex]
[tex]y = 6\sqrt{3}[/tex]