Respuesta :

Given:

Focus of a parabola is (0, -12) and directrix is y = 12.

To find:

The equation of the parabola.

Solution:

General form of a parabola is

[tex](x-h)^2=4p(y-k)[/tex]       ...(i)

where, (h,k) is vertex, (h,k+p) is focus and y=k-p is directrix.

Focus is (0, -12).

[tex](h,k+p)=(0,-12)[/tex]

[tex]h=0[/tex]

[tex]k+p=-12[/tex]         ...(ii)

Directrix is y = 12.

[tex]k-p=12[/tex]      ...(iii)

Adding (ii) and (iii), we get

[tex]2k=0[/tex]

[tex]k=0[/tex]

Putting k=0 in (ii), we get

[tex]0+p=-12[/tex]

[tex]p=-12[/tex]

Putting h=0, k=0 and p=-12 in (i).

[tex](x-0)^2=4(-12)(y-0)[/tex]

[tex]x^2=-48y[/tex]

[tex]-\dfrac{1}{48}x^2=y[/tex]

Therefore, the required equation of parabola is [tex]y=-\dfrac{1}{48}x^2[/tex].