Respuesta :
Answer:
The solution to this question can be defined as follows:
Step-by-step explanation:
Please find the complete question in the attached file.
[tex]A = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right][/tex]
now for given values:
[tex]\left[\begin{array}{ccc} \frac{3}{4} - \lambda & \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2} - \lambda & 0\\ -\frac{1}{4}& -\frac{1}{4} & 0 -\lambda \end{array}\right]=0 \\\\[/tex]
[tex]\to (\frac{3}{4} - \lambda ) [-\lambda (\frac{1}{2} - \lambda ) -0] - 0 - \frac{1}{4}[0- \frac{1}{2} (\frac{1}{2} - \lambda )] =0 \\\\\to (\frac{3}{4} - \lambda ) [(\frac{\lambda}{2} + \lambda^2 )] - \frac{1}{4}[\frac{\lambda}{2} - \frac{1}{4}] =0 \\\\\to (\frac{3}{8}\lambda + \frac{3}{4} \lambda^2 - \frac{\lambda^2}{2} - \lambda^3 - \frac{\lambda}{8} + \frac{1}{16}=0 \\\\\to (\lambda - \frac{1}{2}) (\lambda -\frac{1}{4}) (\lambda - \frac{1}{2}) =0\\\\[/tex]
[tex]\to \lambda_1=\lambda_2 =\frac{1}{2}\\\\\to \lambda_3 = \frac{1}{4} \\\\\to A = max {|\lambda_1| , |\lambda_2|, |\lambda_3|}\\\\[/tex]
[tex]= max{\frac{1}{2}, \frac{1}{2}, \frac{1}{4}}\\\\= \frac{1}{2}\\\\(A) =\frac{1}{2}[/tex]
In point b:
Its
spectral radius is less than 1 hence matrix is convergent.
In point c:
[tex]\to c^{(k+1)} = A x^{k}+C \\\\\to x(0) = \left(\begin{array}{c}3&1&2\end{array}\right) , c = \left(\begin{array}{c}2&2&4\end{array}\right)\\\\ \to x^{(k+1)} = \left[\begin{array}{ccc} \frac{3}{4}& \frac{1}{4}& \frac{1}{2}\\ 0 & \frac{1}{2}& 0\\ -\frac{1}{4}& -\frac{1}{4} & 0\end{array}\right] x^k + \left[\begin{array}{c}2&2&4\end{array}\right] \\\\[/tex]
after solving the value the answer is
:
[tex]\lim_{k \to \infty} x^k=o = \left[\begin{array}{c}0&0&0\end{array}\right][/tex]
