Respuesta :
Answer:
D) 0.79
Step-by-step explanation:
First, find alpha.
[tex]\alpha[/tex] = 1 - (confidence level / 100)
[tex]\alpha[/tex] = 1 - [tex]\frac{58}{100}[/tex]
[tex]\alpha[/tex] = 1 - 0.58
[tex]\alpha[/tex] = 0.42
Then, you can solve for the critical probability.
p* = 1 - [tex]\frac{\alpha}{2}[/tex]
p* = 1 - [tex]\frac{0.42}{2}[/tex]
p* = 1 - 0.21
p* = 0.79
The critical probability, assuming a confidence level of 58% will be "0.79". To understand the calculation, check below.
Probability
According to the question,
Confidence level = 58
Now,
The alpha will be:
→ α = 1 - ([tex]\frac{Confidence \ level}{100}[/tex])
By substituting the values, we get
= 1 - ([tex]\frac{58}{100}[/tex])
= 1 - 0.58
= 0.42
hence,
The critical probability will be:
→ p = 1 - [tex]\frac{\alpha}{2}[/tex]
By substituting the values,
= 1 - [tex]\frac{0.42}{2}[/tex]
= 1 - 0.21
= 0.79
Thus the above approach is correct.
Find out more information about probability here:
https://brainly.com/question/25870256