When a power is negative it can be written as one over number raised to the power ( 5[tex] ^{-2} [/tex] = [tex] \frac{1}{5^{2} } [/tex])
∴ (4 ÷ 3)[tex] ^{-2} [/tex] = [tex]\frac{1}{( \frac{4}{3})^{2} }[/tex]
= [tex] \frac{1}{ \frac{16}{9} } [/tex]
= 1 ÷ [tex] \frac{16}{9} [/tex]
= 1 × [tex] \frac{9}{16} [/tex]
Thus (4 ÷ 3)[tex] ^{-2} [/tex] = [tex] \frac{9}{16} [/tex]