Which step was the first error made? -3\left(2x-3\right)=33−3(2x−3)=33 -6x+6=33−6x+6=33 step 1 -6x=27−6x=27 step 2 \frac{\left(-6x\right)}{-6}=\frac{\left(27\right)}{-6} −6 (−6x) ​ = −6 (27) ​ step 3 x=-4.5x=−4.5 step 4 Step 3 Step 2 Step 1

Respuesta :

Given:

The equation is

[tex]-3(2x-3)=33[/tex]

The incorrect solution steps are given.

To find:

The first error.

Solution:

We have,

[tex]-3(2x-3)=33[/tex]

Using distributive property, we get

[tex]-3(2x)-3(-3)=33[/tex]

[tex]-6x+9=33[/tex]

The given step 1 is [tex]-6x+6=33[/tex], which is not correct.

Therefore, there is first error in step  1 because the distribution property is not used properly.

Hence, the correct option is D.