Listed below are student evaluation ratings of​ courses, where a rating of 5 is for​ "excellent." The ratings were obtained at one university in a state. Construct a confidence interval using a 99​% confidence level. What does the confidence interval tell about the population of all college students in the​ state?

3.6​, 3.1​, 4.0​, 4.9​, 3.0​, 4.3​, 3.6​, 4.6​, 4.6​, 4.0​, 4.4​, 3.6​, 3.3​, 4.2​, 3.7


What is the confidence interval for the population mean mu​?

_ < u < _

nothing ​(Round to two decimal places as​ needed.)

Respuesta :

Answer:

[tex]3.93-2.977\frac{0.574}{\sqrt{15}}=3.49[/tex]    

[tex]3.93+2.977\frac{0.574}{\sqrt{15}}=4.37[/tex]

3.49 < u < 4.37

Step-by-step explanation:

Data provided

3.6​, 3.1​, 4.0​, 4.9​, 3.0​, 4.3​, 3.6​, 4.6​, 4.6​, 4.0​, 4.4​, 3.6​, 3.3​, 4.2​, 3.7

The sample mean and deviation can be calculated with the following formulas

[tex]\bar X= \sum_{i=1}^n \frac{x_i}{n}[/tex]

[tex]s=\sqrt{\frac{\sum_{i=1}^n (x_i-\bar X)}{n-1}}[/tex]

[tex]\bar X=3.93[/tex] represent the sample mean

[tex]\mu[/tex] population mean

s=0.574 represent the sample standard deviation

n=15 represent the sample size  

Confidence interval

The confidence interval for the true mean is given by:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

The degrees of freedom, given by:

[tex]df=n-1=15-1=114[/tex]

The Confidence is 0.99 or 99%, the significance is [tex]\alpha=0.01[/tex] and [tex]\alpha/2 =0.005[/tex], and the critical value would be[tex]t_{\alpha/2}=2.977[/tex]

Replacing we got:

[tex]3.93-2.977\frac{0.574}{\sqrt{15}}=3.49[/tex]    

[tex]3.93+2.977\frac{0.574}{\sqrt{15}}=4.37[/tex]

3.49 < u < 4.37