Respuesta :
Using the compound interest principle, the best loan would be that with the lower return value, Hence, the best option is the option B. The amount saved by going for option B is $90.81
Using the compound interest formula :
- [tex] A = P(1 + \frac{r}{n})^{nt} [/tex]
- P = principal ; r = Rate ; n = compounding time per period
Option A :
[tex] A = P(1 + \frac{r}{n})^{nt} [/tex]
[tex] A = 2000(1 + \frac{0.085}{4})^{4 \times 6} [/tex]
[tex] A = 2000(1 + \frac{0.085}{4})^{24} [/tex]
[tex] A = 2000(1 + 0.00708)^24[/tex]
[tex] A = 2000(1.6564) = 3312.83 [/tex]
Option B :
[tex] A = P(1 + \frac{r}{n})^{nt} [/tex]
[tex] A = 2000(1 + \frac{0.10}{1})^{1 \times 5} [/tex]
[tex] A = 2000(1 + 0.10)^{5} [/tex]
[tex] A = 2000(1 + 0.00708)^5[/tex]
[tex] A = 2000(1.61051) = 3257.79 [/tex]
Difference = 3312. 83 - 3221.02 = $90.81
The better loan would be option B ; as it is cheaper.
Learn more: https://brainly.com/question/13872237