In an ultrahigh vacuum system, the pressure is measured to be 8.4 × 10−11 torr (where 1 torr = 133 Pa). The gas molecules have a molecular diameter of 2.2 × 10−10 m and the temperature is 310 K. Avogadro's number is 6.02214×1023 1/mol. Find the number of molecules in a volume of 0.87 m3 . Answer in units of molecules.

Respuesta :

Answer:

The number of molecules in the volume is  [tex]N_v = 2.27109* 10^{12}[/tex] molecules

Explanation:

From the question we are told that

    The pressure of the ultrahigh vacuum is [tex]P = 8.4*10^{-11} torr = 8.4*10^{-11} * 133 = 1.1172 *10^{-8}Pa[/tex]

     The molecular diameter of the gas molecules [tex]d = 2.2*10^{-10} m[/tex]

      The temperature is  [tex]T = 310 \ K[/tex]

      Avogadro's number is [tex]N = 6.02214 *10^{23}\ l/mol[/tex]

        The volume of the gas is [tex]V = 0.87 m^3[/tex]

From the ideal gas law[[tex]PV = nRT[/tex]] that the number of mole is mathematically represented as

           [tex]n = \frac{PV}{RT}[/tex]

Where R is the gas constant with a value  [tex]R = 8.314\ J/mol[/tex]

  Substituting values

              [tex]n = \frac{1.1172 *10^{-8} * 0.87}{8.314 * 310}[/tex]

             [tex]n = 3.771*10^{-12} \ mole[/tex]

The number of molecules is mathematically represented as

               [tex]N_v = n * N[/tex]

  Substituting values

              [tex]N_v = 3.771*10^{-12} * 6.02214 *10^{23}[/tex]

             [tex]N_v = 2.27109* 10^{12}[/tex] molecules