Respuesta :

Answer:

The  volume of the solid is

[tex]V=\frac{1,960}{3} \pi\ in^3[/tex]

Step-by-step explanation:

step 1

Find the volume of the cylinder

The volume of the cylinder is given by the formula

[tex]V=\pi r^{2} h[/tex]

we have

[tex]r=14/2=7\ in[/tex] ---> the radius is half the diameter

[tex]h=20\ in[/tex]

substitute the values

[tex]V=\pi (7)^{2} (20)=980\pi\ in^3[/tex]

step 2

Find the volume of the two congruent hollow cones

The volume of the two cones is given by the formula

[tex]V=2[\frac{1}{3} \pi r^{2}h][/tex]

we have

[tex]r=7\ in[/tex] ---> is the same that the radius of cylinder

[tex]h=10\ in[/tex] ----> is half that the height of cylinder

substitute

[tex]V=2[\frac{1}{3} \pi (7)^{2}(10)][/tex]

[tex]V=\frac{980}{3} \pi\ in^3[/tex]

step 3

To find out the volume of the solid subtract the volume of the two cones from the volume of the cylinder

[tex]V=980\pi-\frac{980}{3} \pi=\frac{1,960}{3} \pi\ in^3[/tex]