Answer:
L=1.49 m
Explanation:
We are given that
[tex]M=3.11 kg[/tex]
[tex]m_1=m_2=0.213 kg[/tex]
[tex]I=0.831 kgm^2[/tex]
We have to find the length L of the rod
Moment of inertia of the system
[tex]I=\frac{ML^2}{12}+\frac{mL^2}{4}+\frac{mL^2}{4}[/tex]
[tex]0.831=L^2(\frac{M}{12}+\frac{2m}{4})=L^2(\frac{3.11}{12}+\frac{0.213}{2})[/tex]
[tex](\frac{3.11+1.278}{12}L^2=0.831[/tex]
[tex]L^2=\frac{0.813\times 12}{3.11+1.278}[/tex]
[tex]L=\sqrt{\frac{0.813\times 12}{3.11+1.278}}[/tex]
[tex]L=1.49 m[/tex]
Hence, the length of rod=L=1.49 m