Applying the bohr model to a triply ionized beryllium atom (be3+,z=4), find the shortest wavelength of the lyman series for be3+.

Respuesta :

Answer:

[tex]\lambda=5.69*10^{-9}m=5.69nm[/tex]

Explanation:

The Bohr model predicts energy with values:

[tex]h\nu = Z^2E_0(\frac{1}{n^2}-\frac{1}{m^2})\\E_0=-13.6eV[/tex]

[tex]\lambda=\frac{hc}{Z^2E_0}(\frac{1}{\frac{1}{n^2}-\frac{1}{m^2}})[/tex]

with z the atomic number, h the Planck,s constant, c is the speed of light and v the frequency.

The Lyman series is given by

[tex]\frac{1}{\lambda}=R(\frac{1}{1^2}-\frac{1}{n^2})[/tex]

R=1.097*10^7m^-1

That is, for transition between n>=2 and n=1. The shortest wavelength is obtained for n=infinity.

Hence, by replacing we have (h=4.13*10^{-15}eV , c=3*10^8 m/s ):

[tex]\lambda=5.69*10^{-9}m=5.69nm[/tex]

hope this helps!!