Answer:
1) [tex]x^2+ 24x + 144 = 17[/tex]
Step-by-step explanation:
The answer is 1) because the left side in the equation
[tex]x^2+ 24x + 144 = 17[/tex]
can be represented a perfect square:
[tex]x^2+ 24x + 144=(x+12)^2[/tex]
so we have that the original equation becomes:
[tex](x+12)^2=17[/tex]
and then, taking the square root of both sides of the equation:
[tex]\sqrt{(x+12)^2} =[/tex] ± [tex]\sqrt{17}[/tex]
[tex]x+12=[/tex] ±[tex]\sqrt{17}[/tex]
we are left with an equation where we can find the values of x.
so we clear for x and we get:
[tex]x=[/tex] ±[tex]\sqrt{17}[/tex] [tex]-12[/tex]
thus, the two values of x are:
[tex]x_{1}=\sqrt{17}-12 \\x_{2}=-\sqrt{17}-12[/tex]