A discus thrower (arm length 1.1 m) starts from rest and begins to rotate counterclockwise with a constant angular acceleration of 1.7 rad/s2. (a) How many radians of angle does it take for the discus thrower's angular velocity to reach 5.7 rad/s

Respuesta :

Answer:

[tex]\Delta \theta = 9.556\,rad[/tex]

Explanation:

The change in angular position can be found from this formula:

[tex]\omega^{2} = \omega_{o}^{2} +2\cdot \alpha \cdot \Delta \theta[/tex]

[tex]\Delta \theta = \frac{\omega^{2}-\omega_{o}^{2}}{2\cdot \alpha}[/tex]

[tex]\Delta \theta = \frac{(5.7\,\frac{rad}{s} )^{2}-(0\,\frac{rad}{s} )^{2}}{2\cdot (1.7\,\frac{rad}{s^{2}} )}[/tex]

[tex]\Delta \theta = 9.556\,rad[/tex]