Answer:
[tex]x=\frac{20}{3}[/tex] units and [tex]y=\frac{10}{3}[/tex] units is required to maximize the weight.
Step-by-step explanation:
Given weight function is,
[tex]W(x,y)=13xy(20-x-2y)=260xy-13x^2y-26xy^2\hfill (1)[/tex]
where x and y are number of units of first and second ingredients respectively.
To find how many units of each ingredient will maximize the weight we have to find the maximum value of weight function.
[tex]W_x(x,y)=0\implies 260y-26xy-26y^2=0\implies y^2+xy-10y=0\implies y(x+y-10)=0[/tex]
[tex]\therefore[/tex] Either, y=0 or, [tex]x+y=10\hfill (2)[/tex]
And, differentiate partially (1) with respect to y and make it equal to zero we get,
[tex]W_y(x,y)=0\implies 260x-13x^2-52xy=0\implies 13x(20-x-4y)=0[/tex]
[tex]\therefore[/tex] Either, x=0 or, [tex]x+4y=20\hfill (3)[/tex]
Solving (2) and (3) we will get, [tex]x=\frac{20}{3}, y=\frac{10}{3}[/tex].
Hence critical points of (1) are (0,0) and [tex](\frac{20}{3},\frac{10}{3}[/tex]
Consider,
[tex]W_{xx}=A=-26y,W_{xy}=B=260-26x-52y,W_{yy}=C=-52x[/tex]
So that,
[tex]AC-B^2=1352-(260-26x-52y)^2[/tex]
At (0,0),
[tex]AC-B^2=-260<0[/tex]
that is (0,0) is a local minima.
At [tex](\frac{20}{3},\frac{10}{3})[/tex]
[tex]AC-B^2=30131.111>0[/tex]
Which imply [tex](\frac{20}{3},\frac{10}{3})[/tex] is local maxima of (1).
Therefore [tex]x=\frac{20}{3}[/tex] unit and [tex]y=\frac{10}{3}[/tex] unit is required to maximize the weight.