Respuesta :
Answer:
14, 20, 0, 0, 0
Step-by-step explanation:
The notation [tex]|x|[/tex] indicates the absolute value of x, therefore it can be rewritten as:
[tex]|x|=x[/tex] if x [tex]\geq[/tex] 0
[tex]|x|=-x[/tex] if x < 0
In this problem, we have the expression
[tex]x+|x|[/tex]
Therefore, we can rewrite it as:
if x ≥ 0:
[tex]x+|x|=x+x=2x[/tex] (a)
If x < 0:
[tex]x+|x|=x+(-x)=0[/tex] (b)
So now we can substitute the given values into the two expressions:
x = 7 (positive value, so we use expression (a):
[tex]2x=2\cdot 7 = 14[/tex]
x = 10 (positive values, so we use expression (a):
[tex]2x=2\cdot 10=20[/tex]
x = 0 (zero, so we can use expression (a):
[tex]2x=2\cdot 0=0[/tex]
x = -3 (negative value, so we use expression (b):
[tex]x+|x|=0[/tex]
x = -8 (negative value, so we use expression (b):
[tex]x+|x|=0[/tex]
Function values at all five points were calculated using the concept of modulus function.
[tex]f(7) = 14\\f(10) = 20\\f(0) = 0\\f(-3) = 0\\f(-8) = 0[/tex]
The given function is:
[tex]f(x) = x + |x|\\\\f(x) = 2x, x\geq 0\\f(x) =0, otherwise[/tex]
What is a modulus function?
Modulus function is a function which gives the absolute value of a number or variable.
[tex]f(7) = 2*7 = 14\\f(10) = 2*10 = 20\\f(0) = 2*0 = 0\\f(-3) = 0\\f(-8) = 0[/tex]
Hence, function values at all five points were calculated using the concept of modulus function.
[tex]f(7) = 14\\f(10) = 20\\f(0) = 0\\f(-3) = 0\\f(-8) = 0[/tex]
To get more about modulus function visit:
https://brainly.com/question/10538556