Find the value of the expression x+|x|, if x=7, 10, 0, −3, −8. Simplify the expression x+|x|, if:

if x ≥ 0, then x + |x|=
if x < 0, then x + |x|=

Respuesta :

Answer:

14, 20, 0, 0, 0

Step-by-step explanation:

The notation [tex]|x|[/tex] indicates the absolute value of x, therefore it can be rewritten as:

[tex]|x|=x[/tex] if x [tex]\geq[/tex] 0

[tex]|x|=-x[/tex] if x < 0

In this problem, we have the expression

[tex]x+|x|[/tex]

Therefore, we can rewrite it as:

if x ≥ 0:

[tex]x+|x|=x+x=2x[/tex] (a)

If x < 0:

[tex]x+|x|=x+(-x)=0[/tex] (b)

So now we can substitute the given values into the two expressions:

x = 7 (positive value, so we use expression (a):

[tex]2x=2\cdot 7 = 14[/tex]

x = 10 (positive values, so we use expression (a):

[tex]2x=2\cdot 10=20[/tex]

x = 0 (zero, so we can use expression (a):

[tex]2x=2\cdot 0=0[/tex]

x = -3 (negative value, so we use expression (b):

[tex]x+|x|=0[/tex]

x = -8 (negative value, so we use expression (b):

[tex]x+|x|=0[/tex]

Function values at all five points were calculated using the concept of modulus function.

[tex]f(7) = 14\\f(10) = 20\\f(0) = 0\\f(-3) = 0\\f(-8) = 0[/tex]

The given function is:

[tex]f(x) = x + |x|\\\\f(x) = 2x, x\geq 0\\f(x) =0, otherwise[/tex]

What is a modulus function?

Modulus function is a function which gives the absolute value of a number or variable.

[tex]f(7) = 2*7 = 14\\f(10) = 2*10 = 20\\f(0) = 2*0 = 0\\f(-3) = 0\\f(-8) = 0[/tex]

Hence, function values at all five points were calculated using the concept of modulus function.

[tex]f(7) = 14\\f(10) = 20\\f(0) = 0\\f(-3) = 0\\f(-8) = 0[/tex]

To get more about modulus function visit:

https://brainly.com/question/10538556