Find the vector w w of length 6 6 in the direction of v = 8 i + 7 j . v=8i+7j. (Give your answer using component form or standard basis vectors. Express numbers in exact form. Use symbolic notation and fractions where needed.)

Respuesta :

Answer: Vector= [tex]\frac{48i}{\sqrt{113} } + \frac{42j}{\sqrt{113} }[/tex]

Step-by-step explanation:

A vector w of length 6 in the direction of v= 8i + 7j is given by

Vector= Length x Vector/Magnitude of vector

Here, Length= 6

Vector= 8i + 7j

Magnitude of vector= [tex]\sqrt{(8)^2+(7)^2}[/tex]

Magnitude of vector= [tex]\sqrt{113\\[/tex]

So, Vector= 6 x [tex]\frac{8i + 7j}{\sqrt{113} }[/tex]

Vector= [tex]\frac{48i}{\sqrt{113} } + \frac{42j}{\sqrt{113} }[/tex]