. Evaluate tan(α + β) = sin(????+????) / cos(????+????) to show tan(???? + ????) = tan(????)+tan(????????) / 1−tan(????) tan(????
. Use the resulting formula to show that
tan(2????) = 2 tan(????) / 1−tan2(????)

Respuesta :

Answer with Step-by-step explanation:

We are given that

[tex]tan(\alpha+\beta)[/tex]

[tex]\frac{sin(\alpha+\beta}{cos(\alpha+\beta)}[/tex]

By using formula[tex]tan x=\frac{sin x}{cos x}[/tex]

[tex]\frac{sin\alpha cos\beta+sin\beta cos\alpha}{cos\alpha cos\beta-sin\alpha sin\beta}[/tex]

By using property:[tex] sin(x+y)=sin x cosy+cos x sin y[/tex]

[tex] cos(x+y)=cos x cosy-sin x siny[/tex]

Divide numerator and denominator by [tex] cos\alpha cos\beta[/tex]

Then, we get

[tex]\frac{\frac{sin\alpha}{cos\alpha}+\frac{sin\beta}{cos\beta}}{1-\frac{sin\alpha sin\beta}{cos\alpha cos\beta}}[/tex]

[tex]tan(\alpha+\beta)=\frac{tan\alpha+tan\beta}{1-tan\alpha tan\beta}[/tex]

Hence, proved

Substitute [tex]\alpha=\beta[/tex]

Then we get

[tex]tan 2\alpha=\frac{tan\alpha+tan\alpha}{1-tan^2\alpha}[/tex]

[tex]tan(2\alpha)=\frac{2tan\alpha}{1-tan^2\alpha}[/tex]

Hence, proved.