Answer:
e. f2 < f < f1
Explanation:
According to Doppler's Effect:
[tex]\frac{f_o}{f_s} =\frac{S+v_o}{S-v_s}[/tex] ......................................(1)
where:
[tex]f_o\ \&\ f_s[/tex] are observed frequency and source frequency respectively.
S = velocity of sound in the air from a stationary source
[tex]v_o\ \&\ v_s[/tex] are the velocity of the observer and the velocity of sound source with respect to a stationary frame of reference.
Here [tex]v_o=0\[/tex]
Then eq. (1) becomes:
[tex]\frac{f}{f1} =\frac{S}{S-v_s}[/tex]
Now, the value:
[tex]\frac{f1}{f} =\frac{S}{S-v_s}>1[/tex]
[tex]\therefore f<f1[/tex]
Now the eq. (1) becomes
[tex]\frac{f2}{f} =\frac{S}{S-(-v_s)}[/tex]
∵the direction of motion of the source is away from the observer so a negative sign has been introduced.
Now, the value:
[tex]\frac{f2}{f} =\frac{S}{S+v_s}<1[/tex]
[tex]\therefore f>f2[/tex]