Respuesta :

Answer:

False

sin x cos y [tex]\neq\frac{\bf 1}{\bf 2} [/tex] (sin (x + y) + cos (x - y))

Step-by-step explanation:

Given [tex]\sin x \cos y = 1/2(\sin(x + y) + \cos(x - y))\hfill (1)[/tex]

To verify  that the equality is true or false

[tex]\sin (x+y)=\sin x \cos y+ \cos x \sin y[/tex]  and

[tex]\cos (x-y)=\cos x \cos y+ \sin x \sin y[/tex]

Now adding the above equations we get

[tex]\sin (x+y)+ \cos (x-y)= \sin x \cos y+ \cos x \sin y+ \cos x \cos y+ \sin x \sin y\hfill (2)[/tex]

Comparing  the equations (1) and (2) we get

[tex]\sin x \cos y \neq \frac {1}{2} \(sin (x + y) + \cos (x - y))[/tex]

Therefore the given equality is not true (ie, false)