Answer:
Wavelength = 486.51 pm
Explanation:
The expression for the deBroglie wavelength is:
[tex]\lambda=\frac {h}{m\times v}[/tex]
Where,
[tex]\lambda[/tex] is the deBroglie wavelength
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
m is the mass of electron having value [tex]9.11\times 10^{-31}\ kg[/tex]
v is the speed of electron.
Given that v = 1495 km/s (Corrected from source)
Also, 1 km = 1000 m
So, v = 1495000 m/s
Applying in the equation as:
[tex]\lambda=\frac {h}{m\times v}[/tex]
[tex]\lambda=\frac{6.626\times 10^{-34}}{9.11\times 10^{-31}\times 1495000}\ m[/tex]
[tex]\lambda=\frac{10^{-34}\times \:6.626}{10^{-31}\times \:13619450}\ m[/tex]
[tex]\lambda=\frac{6.626}{13619450000}\ m[/tex]
[tex]\lambda=4.8651\times 10^{-10}\ m[/tex]
Also, 1 m = 10¹² pm
So, Wavelength = 486.51 pm