Given points A(4, –2), B(1, 2), C(–2, 6). Find the distance between each two of them. Prove that points A, B, and C are collinear. Which point is in between the other two?

Respuesta :

Answer:

Part 1) [tex]dAB=5\ units[/tex]

Part 2) [tex]dBC=5\ units[/tex]

Part 3) [tex]dAC=10\ units[/tex]

Part 4) In the explanation (The point B is between point A and point C)

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]A(4, -2), B(1, 2), C(-2, 6)[/tex]

step 1

Find distance AB

[tex]A(4, -2), B(1, 2)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(2+2)^{2}+(1-4)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]dAB=5\ units[/tex]

step 2

Find distance BC

[tex]B(1, 2), C(-2, 6)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(6-2)^{2}+(-2-1)^{2}}[/tex]

[tex]d=\sqrt{25}[/tex]

[tex]dBC=5\ units[/tex]

step 3

Find distance AC

[tex]A(4, -2),C(-2, 6)[/tex]

substitute the values in the formula

[tex]d=\sqrt{(6+2)^{2}+(-2-4)^{2}}[/tex]

[tex]d=\sqrt{100}[/tex]

[tex]dAC=10\ units[/tex]

step 4

Prove that points A, B, and C are collinear. Which point is in between the other two?

we know that

If the points are collinear

then

[tex]AC=AB+BC[/tex]

we have

[tex]dAB=5\ units[/tex]

[tex]dBC=5\ units[/tex]

[tex]dAC=10\ units[/tex]

substitute

[tex]10=5+5[/tex]

[tex]10=10[/tex] ----> is verified

The point B is between point A and point C