Answer:
The correct option is C.
Step-by-step explanation:
Given information:
[tex]\overline{x}_1=4.95[/tex]
[tex]\overline{x}_2=5.22[/tex]
[tex]s_1=0.64[/tex]
[tex]s_2=0.89[/tex]
[tex]n_1=n_2=21[/tex]
The formula for t test statistic t* is
[tex]t^*=\frac{(\overline{x}_1-\overline{x}_2)-(\mu_1-\mu_2)}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}[/tex]
Using the formula we get
[tex]t^*=\frac{\left(4.95-5.22\right)-(0)}{\sqrt{\frac{0.64^2}{21}+\frac{0.89^2}{21}}}[/tex]
[tex]t^*=-1.12869182873[/tex]
[tex]t^*\approx -1.13[/tex]
The value of test statistic t* is -1.13. Therefore the correct option is C.