Respuesta :
Answer : The mass of [tex]O_2[/tex] dissolved will be, 0.2365 grams
Explanation :
First we have to calculate the concentration of [tex]O_2[/tex].
As we know that,
[tex]C_{O_2}=k_H\times p_{O_2}[/tex]
where,
[tex]C_{O_2}[/tex] = concentration of [tex]O_2[/tex] = ?
[tex]p_{O_2}[/tex] = partial pressure of [tex]O_2[/tex] = 1.65 atm
[tex]k_H[/tex] = Henry's law constant = [tex]1.28\times 10^{-3}mole/L.atm[/tex]
Now put all the given values in the above formula, we get:
[tex]C_{O_2}=(1.28\times 10^{-3}mole/L.atm)\times (1.65atm)[/tex]
[tex]C_{O_2}=2.112\times 10^{-3}mole/L[/tex]
The concentration of [tex]O_2[/tex] = [tex]2.112\times 10^{-3}mole/L[/tex]
Now we have to calculate the moles of [tex]O_2[/tex]
[tex]\text{Moles of }O_2=\text{Concentration of }O_2\times \text{volume of solution}[/tex]
[tex]\text{Moles of }O_2=(2.112\times 10^{-3}mole/L)\times (3.5L)=7.392\times 10^{-3}mole[/tex]
Now we have to calculate the mass of [tex]O_2[/tex]
[tex]\text{Mass of }O_2=\text{Moles of }O_2\times \text{Molar mass of }O_2[/tex]
[tex]\text{Mass of }O_2=(7.392\times 10^{-3}mole)\times (32g/mole)=0.2365g[/tex]
Therefore, the mass of [tex]O_2[/tex] dissolved will be, 0.2365 grams