contestada

If the side length of a square pyramid is tripled and the slant height is divided by 5, what would be the formula to find the modified surface area?

Respuesta :

gmany

Answer:

[tex]\large\boxed{S.A.'=9b^2+\dfrac{6}{5}bh}[/tex]

Step-by-step explanation:

The formula of a surface area of a square pyramid:

[tex]S.A.=b^2+2bh[/tex]

b - side of the square

h - slant height

The new lenghts:

[tex]3b[/tex] - side of the square

[tex]\dfrac{h}{5}[/tex] - slant height

Substitute:

[tex]S.A.'=(3b)^2+2(3b)\left(\dfrac{h}{5}\right)=9b^2+\dfrac{6}{5}bh[/tex]