Respuesta :

Answer:

[tex]z=13(\cos 157\degree +i\sin157\degree)[/tex]

Step-by-step explanation:

The given complex number is

[tex]z=-12+5i[/tex]

The polar form of this complex number is;

[tex]z=r(\cos \theta +i\sin \theta)[/tex], where

[tex]r=\sqrt{(-12)^2+5^2}[/tex]

[tex]r=\sqrt{144+25}=\sqrt{169}=13[/tex]

and

[tex]\theta =\tan^{-1}(\frac{5}{-12})[/tex]

This implies that;

[tex]\theta=157\degree[/tex] to the nearest degree.

Hence the polar form is

[tex]z=13(\cos 157\degree +i\sin157\degree)[/tex]