Respuesta :

Answer:

Step-by-step explanation:

To find the number of different ways she can stack 3 of them in a tower, we need to use the formula:

[tex]_{n}P_{k}=\dfrac{n!}{(n-k)!}[/tex]

n = 4

k = 3

[tex]_{n}P_{k}=\dfrac{4!}{(4-3)!}[/tex]

[tex]_{n}P_{k}=\dfrac{4!}{1!}[/tex]

[tex]_{n}P_{k}=\dfrac{4*3*2*1!}{(1)!}[/tex]

[tex]_{n}P_{k}=\dfrac{4*3*2*1!}{1}[/tex]

[tex]_{n}P_{k}=\dfrac{24}{1}[/tex]