Respuesta :

Answer:

The function equation is; [tex]y = 21(0.7)^x[/tex]

Step-by-step explanation:

An exponential decay function is in the form of  [tex]y= ab^x[/tex] ......[1]

where a≠0 is the initial value and b≠0, [tex]0<b<1[/tex].

Consider any two ordered pairs to modeled the function:

(-1 , 30) and (0, 21)

Substitute these value to get a and b value ;

For (0, 21)

put x = 0 and y = 21 in [1] we get

[tex]21 = ab^0[/tex]

or

21 = a

Similarly,

substitute (-1 , 30) we get;

[tex]30 = ab^{-1} = \frac{a}{b}[/tex]

or

[tex]30 b = a[/tex]

Substitute the value of a to solve for b;

[tex]30 b = 21[/tex]

Divide both sides by 30 we get;

[tex]b = \frac{21}{30} = 0.7[/tex]

or

b = 0.7 < 1

Value of a = 21 and b= 0.7

Substitute these values in [1] to get the required function:

[tex]y = 21(0.7)^x[/tex]        

therefore, the function equation is; [tex]y = 21(0.7)^x[/tex]