Respuesta :

Answer:

tan (pi+x) = 2/5

Step-by-step explanation:

Find tan (pi +x)

tan(A + B) = (tan A + tan B) / (1 − tan A tan B)

tan(pi + x) = (tan pi + tan x) / (1 − tan pi tan x)

tan(x)=2/5  and tan (pi) = 0

tan(pi + x) = (0 + 2/5) / (1 − 0*2/5)

                 = 2/5 /(1-0

                  =2/5

[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]

Here,

tan(x)=2/5

we have to find the value of tan(π+x)

we know that,

[tex]\boxed{\sf{tan(A+B)=\dfrac{tanA+tanB}{1-tanA.tanB} } }[/tex]

According to the question,

[tex]\sf{tan(π+x)=\dfrac{tanπ+tanX}{1-tanπ.tanX}}[/tex]

But,

  • tanπ=0
  • tanX=2/5

putting the value,

  • [tex]\sf{tan(π+x)=\dfrac{0+\frac{2}{5}}{1-0.\frac{2}{5}}}[/tex]

  • [tex]\sf{tan( π+x)=\dfrac{\frac{2}{5}}{1-0} }[/tex]

  • [tex]\sf{tan( π+x)=\dfrac{\frac{2}{5}}{1} }[/tex]

  • [tex]\sf{tan( π+x)=\dfrac{2}{5}×1 }[/tex]

  • [tex]\sf{tan( π+x)=\dfrac{2}{5} }[/tex]

Therefore,

[tex]\sf{The~ value~ of _{_{tan(π+x)}}=\dfrac{2}{5} }[/tex]