Respuesta :
Answer:
tan (pi+x) = 2/5
Step-by-step explanation:
Find tan (pi +x)
tan(A + B) = (tan A + tan B) / (1 − tan A tan B)
tan(pi + x) = (tan pi + tan x) / (1 − tan pi tan x)
tan(x)=2/5 and tan (pi) = 0
tan(pi + x) = (0 + 2/5) / (1 − 0*2/5)
= 2/5 /(1-0
=2/5
[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]
Here,
tan(x)=2/5
we have to find the value of tan(π+x)
we know that,
[tex]\boxed{\sf{tan(A+B)=\dfrac{tanA+tanB}{1-tanA.tanB} } }[/tex]
According to the question,
[tex]\sf{tan(π+x)=\dfrac{tanπ+tanX}{1-tanπ.tanX}}[/tex]
But,
- tanπ=0
- tanX=2/5
putting the value,
- [tex]\sf{tan(π+x)=\dfrac{0+\frac{2}{5}}{1-0.\frac{2}{5}}}[/tex]
- [tex]\sf{tan( π+x)=\dfrac{\frac{2}{5}}{1-0} }[/tex]
- [tex]\sf{tan( π+x)=\dfrac{\frac{2}{5}}{1} }[/tex]
- [tex]\sf{tan( π+x)=\dfrac{2}{5}×1 }[/tex]
- [tex]\sf{tan( π+x)=\dfrac{2}{5} }[/tex]
Therefore,
[tex]\sf{The~ value~ of _{_{tan(π+x)}}=\dfrac{2}{5} }[/tex]