Respuesta :
y(x+z) + 3z(x+y)
yx + yz + 3xz + 3yz
yx =3xz +4yz
yx - 3xz = 4yz
Divide both sides by yz
x - 3x = 4yz / yz
-2x = 4
first distribute
a(b+c)=ab+ac
y(x+z)=yx+yz
3z(x+y)=3zx+3zy
so now we have
yx+yz=3zx+3zy
make all x's on one side
subtract 3zy frm btohs ides
yx-3zx+yz=3zy
subtract yz frmo both sides
yx-3zx=3zy-yz
undistribute the x on the left side
x(y-3z)=2zy
divide both sides by (y-3z)
x=[tex] \frac{2zy}{y-3z} [/tex]
a(b+c)=ab+ac
y(x+z)=yx+yz
3z(x+y)=3zx+3zy
so now we have
yx+yz=3zx+3zy
make all x's on one side
subtract 3zy frm btohs ides
yx-3zx+yz=3zy
subtract yz frmo both sides
yx-3zx=3zy-yz
undistribute the x on the left side
x(y-3z)=2zy
divide both sides by (y-3z)
x=[tex] \frac{2zy}{y-3z} [/tex]