Respuesta :

DeanR
Circumference C, radius r.

[tex]C = 2\pi r[/tex]

[tex]r = \dfrac{C}{2\pi}[/tex]

[tex]\pi r^2 = \pi \dfrac{C^2}{4 \pi^2} = \dfrac{C^2}{4\pi}[/tex]

75% of the area is

[tex]\dfrac{3}{4} \pi r^2 = \dfrac{3C^2}{16\pi}[/tex]

Plugging in  C=10 gives

[tex]\dfrac{3}{4} \pi r^2 = \dfrac{3(10)^2}{16\pi} = \dfrac{75}{4 \pi} \approx 5.97[/tex]

Choice 1, 6 square units.